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SUMMARY

A non-linear method, PREC, for computation of the movement of a free surface is proposed here. The
method is composed of three steps: identifying the free surface by using a non-linear function from the
volume fraction matrix, updating the volume fraction matrix using a volume projection method with error
correction, and treatment of the results using overshooting or undershooting. Identification of the free
surface includes using a polynomial function with 2, 4, or 8 coefficients for one-, two-, or three-dimensional
problems, respectively. The polynomial reconstruction involves non-negligible numerical error. The second
advection step includes a linear projection method in space and time. Advection of the volume fraction
matrix is computed from the occupying volume of the mesh at the previous time step. At the new time
step, the error at each grid point is assumed to be similar to the error at the previous time step and is
used for correction. Overshooting or undershooting develops around the free surface mesh points due
to the solution’s finite time increment. The third step includes truncating the numerical overshooting or
undershooting volumes, i.e. isotropic spreading of the excess fluid volumes. The PREC method is evaluated
for a one-dimensional flow case and several two-dimensional simple flow cases with circular sections
(cases include transition parallel to a coordinate, transition with an intersection angle to a coordinate, and
rotation). The results from the present method are compared with analytical solutions and results from a
donor-cell VOF method. As a result of these comparisons, the PREC method is validated. Copyright q
2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The computation accuracy of interface movement becomes important when the liquid surface
gradient becomes very steep or the surface folds over. For example, simulation of short wave
breaking phenomena or the instantaneous wave impact force exerted on a rigid body requires
precise tracking of the free surface.

Considering a two-phase problem, often, physical properties show discontinuities, for example,
the density, velocity, and pressure gradient vary across the interface boundary, which causes
difficulties in the computational approach. The free surface boundary conditions are applied to
the interface. A gas or liquid particle on the boundary surface moves with the given flow field
surrounding the particle and will therefore stay on the boundary surface unless the boundary surface
folds over or attaches to another boundary surface. When a liquid flow has an interface with the
open air, a constant atmospheric pressure can be applied along the boundary surface. Different
methods for computation of the movement of the free surface have been developed, depending on
the numerical techniques or grid systems adopted.

Overall, free surface boundary conditions and the relevant tracking method should include the
treatment of the volume, density, flow velocity, and pressure. The interface between an incom-
pressible liquid and a gas in the open space should be considered in addition to the volumetric
portion of the free surface.

A wide range of computational methods has been developed to simulate the movement of multi-
phase fluids with interfaces. Free surface tracking methods can be classified into different groups
(depending on grid structure): grid-free methods, unstructured-grid methods, and structured-grid
methods. A typical grid-free method is the smooth particle hydrodynamics (SPH) method proposed
by Lucy [1] and others [2, 3]. Several finite element methods or finite difference methods also
make use of unstructured grid systems, the form of which may change as computation goes
forward.

Methods can also be classified on the basis of movement of the grid positions or particle positions
to be computed as moving-grid or Lagrangian methods, and non-moving or Eulerian methods. The
moving-grid method has the distinct merit that the computational cell can naturally represent
the free surface. The grid-free SPH method introduces fluid particles that contain information
on the density, pressure, velocity, and position and can be considered as a Lagrangian method.
However, the moving-grid methods allow accumulation of numerical errors due to the distortion
of grid system. Some efforts have been proposed to try to reduce the grid-distortion-related total
error of the method (see arbitrary Lagrangian–Eulerian method [4]).

Structured-grid methods include both Lagrangian and Eulerian concepts. The Lagrangian
methods include the marker-and-cell method [5–7], which is applied to a fixed grid system, but
the free surface is tracked in a Lagrangian manner by involving many tracers within a mesh cell.
Lagrangian methods have merit in that they guarantee non-diffusive advection of the free surface
positions that carry discontinuities of some physical properties across the interface. However, this
approach also has several detrimental aspects. First of all, the minimum and maximum number of
markers in each surface grid box should be maintained. Other errors are produced in finding new
positions of the markers. The position of the final free surface should be found by an interpolation
technique from the discrete marker positions with some additional errors.

Eulerian methods include the VOF method [8–16] and level set method [17–19]. A fixed
grid method maintains the grid system during computation, and the resolution of the moving
interface is one of the key elements for the success of the method. When the grid size is used to
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describe the interface between filled and not-filled indication, the resolution of the computation
becomes poor. The resolution of these models has been improved by introducing finer description
techniques given a coarse grid system. The VOF methods introduce a matrix, F , an element of
which represents volume fraction ratio at each mesh cell and helps describe, indirectly, the shape
of the interface, whereas the level set method does not use the volume fraction ratio but uses
sophisticated mathematical functions to describe the movement of the interface. Although the level
set method can be used to describe highly complex interface geometry, including sharp edges or
high curvature, it has difficulty satisfying the conservation of mass principle.

The VOF method solves unsteady convective movement of the index values, F , so that they
may be used in finite difference equations. The F value at a grid point indicates the volume
fraction in a mesh cell. The VOF method has evolved in two different directions since it was
proposed by Hirt and Nichols [8]; the geometric reconstruction methods and algebraic interface
capturing methods. The algebraic interface capturing methods do not involve geometric reconstruc-
tion but use high-resolution advection schemes to compute the VOF matrix [20, 21]. It has been
reported that the algebraic methods do not guarantee to suppress numerical diffusion or smearing
of the fluid mass and must incorporate some artificial suppression for solution of high-resolution
schemes.

If the free surface is expressed as z in a three-dimensional domain, F at a grid point (i, j,k) is

Fi, j,k =
∫
V
zs dV (1)

where zs is the depth of the fluid in the grid point and V is the volume.
The F matrix is considered as discrete values of a conceptual, continuous, and differentiable

function in a three-dimensional domain. Matrix F advects with the following equation:

dF(x, y, z, t)=0 (2)

where F indirectly describes the position of the free surface in a range of 0�F�1. Modifications
or refinements of the VOF method have also been proposed by several researchers [22–26].

Inevitable numerical diffusion or smearing of function F , which includes a transition across the
free surface boundary, has been intentionally controlled by suppressing the width of the partial
fraction grid points, or chopping and re-distribution of the overflow or underflow volume fraction
function around the boundary surface.

Another function, f (x, y, z, t), can be defined and used to describe the detailed free surface
shape inside a grid point. The detailed function may have either an explicit or an implicit form.
Early VOF methods adopted step shapes for the f function instead of true smooth free surface
shapes. More recently, linearly varying or non-linearly varying f functions have been proposed
for higher accuracy [8–12].

The linear improvements of the f function in the VOF method may take into account either
spatial variations or temporal variations of the f function or both. Kim et al. [22] used the following
linear relationship between the detailed surface and the other two independent variables for three-
dimensional flows and argued that the linear expansion of the detailed free surface description
improves the accuracy of the solution in tracking the free surface:

zs=C1+C2x+C3y (3)
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where zs is the free surface level, x and y are the Cartesian coordinates, and C1, C2, C3 are
coefficients.

Recently VOF methods using a non-linear f function have been proposed [23–26]. Kim and
No [23] adopted a second-order function to trace the free surface in the x–y domain:

ys=C1+C2x+C3x
2 (4)

where ys is the free surface level in the grid point. The fact that the above method is applicable
only to two-dimensional problems is a drawback of the method.

Du et al. [24] introduced a polynomial function to express the free surface level in a three-
dimensional domain:

zs=C1x+C2y+C3xy+C4x
2+C5y

2 (5)

The above equation involves five coefficients that are determined at each time step from minimum
number of five surrounding F values. Furthermore, the required number of F values varies
depending on the distribution condition. A constant coefficient should also be added to the above
equation to help express the arbitrary shape of the free surface. When the surface overturns, the
above explicit equation for z should be changed into another explicit equation for x or y.

Xiao et al. [25] proposed a non-linear f function in their THINC scheme for tracking the free
surface. The function captures the position of the free surface by using the hyperbolic tangent
function in each direction instead of the tangent function used in a previous method [26]:

f (x)= C1

2
{1+C2 tanh(C3(x−xd))} (6)

where x is the non-dimensionalized coordinate to the grid size �x , xd is the non-dimensionalized
coordinate of the jump, and C1,C2,C3 are coefficients. The THINC method represents the diffusive
feature of a delta function and the derivative function of a step function well. However, the
scheme still involves a non-universal parameter, which is selected empirically to account for the
direction-dependent behavior of the delta function, and its varying diffusion speed in different
directions.

In general, high accuracy is often obtained by sacrificing simplicity or computational efficiency,
or vice versa. A new relatively simple method for surface tracking, which is still thought to
be accurate, is proposed here. This paper concerns the free surface tracking methods for finite
difference methods of a regular grid system only. A non-linear distribution of the local volume
fraction function, f , is introduced. Although function f has a non-linear form, it shows linear
variation along each x, y, or z direction; in other words, it has a linear form when two indepen-
dent variables are fixed. The new function is simply defined by the F matrix around the grid
point of interest in one-, two-, or three-dimensional computational domains, depending on the
problem.

The newmethod is tested for simple free surface flow conditions, which have analytical solutions.
First, the method is evaluated for pure transition of the free surface in a one-dimensional domain.
Second, pure transition of liquid bodies of circular section in a two-dimensional domain with an
angle between the bodies of 0–45◦ relative to a Cartesian coordinate is modelled. Third, rotation
of liquid bodies of circular section is evaluated. Test results from the new method are compared
with analytic solutions and an early donor cell VOF method.
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2. THE NEW METHOD, PREC

VOF methods have often been used on a regular grid system. Only two-phase flows are considered
here. Wave propagation in a vertical two-dimensional domain is a typical unsteady flow example
with a free surface boundary, see Figure 1. As time marches forward, the free surface, which
divides air and water, moves across the fixed grid borders.

The matrix element, F , contains information on the portion of a fluid in a grid point. When
the detailed free surface shape at a grid point is known, the exact F value for the grid point can
be determined by integrating the wet depth within the grid point. However, we cannot obtain the
detailed surface shape in a grid box from an F value of the grid box only, which means that the
VOF description of the partly filled situation does not provide sufficient information to describe
the exact shape of the boundary surface. An F value defined at the grid center does not provide
any information on the center of gravity of the fluid, or the gradient of the surface plane, even
if the surface is a plane in the grid box. When the F arrays are given at grid centers, an infinite
number of exact solutions on the free surface shape exist. For example, if F arrays are given
in a two-dimensional domain as in Figure 2, not only straight lines but also many other non-
straight curves become solutions. Further assumptions or processes such as interpolation, fitting,
or spreading have often been introduced to choose the detailed free surface shape from limited F
array information. Some researchers have used weighting functions that are defined from adjacent

z

x

Figure 1. Free surface movement on a regular grid.

0.5 0.5 0.5

Figure 2. Possible infinite solutions for a given F array.
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F values as a practical choice [7]. This type of approach may tend to produce rather smooth
solutions.

A modified algorithm for the existing hyperbolic tangent VOF method [11], to trace the free
surface position, is proposed here. The algorithms for velocity and pressure fields, which will
complete the whole VOF method, are not dealt with in this paper.

The computation of the F array with time or tracing the free surface is split into three steps,
see Figure 3.

Originally, the VOF method was introduced by converting a discontinuous density distribution
into a constant function at a grid point, called f , which looks like a step function. Ideally,
function f can have a value of 0 or 1 within a grid point. If the step function is expressed by
some alternative approximation function, function f can have a value between 0 and 1, and the
precise free surface can be defined as f =0.5 or some other discrete value. The representative
volume fraction parameter F of the grid point and the detailed function f within the grid point
have the same value. An explicit expression for the free surface level can be used instead of
an implicit expression like the f function. In this case, a coordinate to express the free surface
needs to be chosen. Consider a simple one-dimensional flow case as that shown in Figure 4.
The liquid partly occupies the i th grid point, attached to the (i+1)th wet grid point, see Figure
4(a). The derivative of f in the x direction is a delta function, see Figure 4(b). However, in
order to handle the movement of the delta function in a finite difference scheme, the f function
can take a continuous form instead of being a step function. For example, if the f function
is assumed to be linear between grid centers, as in Figure 4(c), its derivative will have a step
function as shown in Figure 4(d). A higher-order or smoother function could be used for f and
its derivative function (see Figure 4(e) and (f) or (g) and (h)). It should be noted that a higher-
order function automatically involves more degrees of freedom (or coefficients) in expressing the
distribution of f . Because the physical properties and their derivative function at the free surface
have discontinuity or delta function, a higher-order description does not necessarily help solve the
problem.

SURFACE IDENTIFICATION
COMPUTATION OF
RECONSTRUCTION ERROR 

ADVECTION WITH
PROJECTION AND ERROR
CORRECTION

RE-DISTRIBUTION OF
OVERFLOW AND UNDERFLOW

Figure 3. Computation steps of the present method.
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Figure 4. Various concepts of volume-of-fluid and function f .

The free surface does not physically diffuse, whereas numerical diffusion is inevitable during
computation of the advection of the F array with the VOF method. The numerical diffusion keeps
on developing, and reconstruction of the free surface becomes more difficult as time marches
forward. Adequate suppression of the numerical diffusion or smearing of the F array is needed in
a VOF method.

A staggered grid system is adopted. It has been widely used for solving flow equations composed
of primitive variables such as density, pressure, and velocities. Velocities and fluxes are defined at
grid border line centers, whereas the fraction volume array F , density, and the pressure are defined
at grid centers in either three-, two-, or one-dimensional domains. The numbering system of the
physical properties in a two-dimensional domain is shown in Figure 5 for convenience.

The first step for identification of the free surface position is important, because it influences
the overall accuracy of the surface tracking method. Here a polynomial function is proposed to
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Fi,j 

Ui,j

Vi,j 

x

y

i

j

Figure 5. Variables numbering system of the present method.

express a spatially continuous variation of f , that is

f (x, y, z) = C1+C2x+C3y+C4z+C5xy+C6yz

+C7zx+C8xyz, 0�x�1, 0�y�1, 0�z�1

C1 = Fi, j,k

C2 = Fi+1, j,k−Fi, j,k

C3 = Fi, j+1,k−Fi, j,k

C4 = Fi, j,k+1−Fi, j,k

C5 = Fi, j,k−Fi+1, j,k−Fi, j+1,k+Fi+1, j+1,k

C6 = Fi, j,k−Fi, j+1,k−Fi, j,k+1+Fi, j+1,k+1

C7 = Fi, j,k−Fi, j,k+1−Fi+1, j,k+Fi+1, j,k+1

C8 = −Fi, j,k+Fi+1, j,k+Fi, j+1,k+Fi, j,k+1

−Fi+1, j+1,k−Fi, j+1,k+1−Fi+1, j,k+1+Fi+1, j+1,k+1

(7)

where x, y, z are non-dimensionalized Cartesian coordinates with respect to the grid sizes in
the x , y, z directions, respectively; and Fi, j,k,Fi+1, j,k,Fi, j+1,k,Fi, j,k+1,Fi+1, j+1,k,Fi, j+1,k+1,

Fi+1, j,k+1,Fi+1, j+1,k+1 are F values at eight grid centers that compose a cube. Obviously, f (0,
0,0)=Fi, j,k, f (1,0,0)=Fi+1, j,k, f (0,1,0)=Fi, j+1,k, f (0,0,1)=Fi, j,k+1, f (1,1,0)=Fi+1, j+1,k,

f (0,1,1)=Fi, j+1,k+1, f (1,0,1)=Fi+1, j,k+1, and f (1,1,1)=Fi+1, j+1,k+1, and the f function
matches well with the F array.

To have a better view of the f function, we take a simple two-dimensional example in x–y
domain: Fi, j =0,Fi+1, j =1,Fi, j+1=1, and Fi+1, j+1=1 (see Figure 6). The three-dimensional
view of function f for the two-dimensional problem within a grid box is shown in Figure 6(a).
We define the free surface as the surface where f =0.5 for the three-dimensional problem, and the
contour of f =0.5 shows the interface curve for the two-dimensional problem, see Figure 6(b).

The new equation for a one-dimensional problem is examined first. A partly filled grid point
of (i) (Fi =a) is shown in Figure 4(a). Function f is a piecewise collection of straight lines (see
Figure 7).
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j

i+1

j+1

i(a)

(b)

Figure 6. Definition of detailed function f and example.

F

x

1

0
b

i i+1

0.5

a

Figure 7. Error produced from polynomial function for one-dimensional flow case.

The simplified equation has the form

f (x) = C1+C2x, 0�x�1

C1 = Fi

C2 = Fi+1−Fi

(8)

Finding the surface position from f =0.5, where the linear f function crosses a constant level of
0.5, the computed fraction volume of F∗

i (=b) is not the same as the given Fi (=a) directly drawn
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0 0.5 1 1.5

Series1
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b

Figure 8. Relationship between true volume a and computed volume b.

from the free surface position. The relationship between a and b is shown in Figure 8 and can be
expressed by the following fractional equation:

b = 0.5

(
1

1−a
−1

)
, 0�a<0.5

b = 0.5

(
3− 1

a

)
, 0.5�a�1

(9)

Comparing the relationship between a and b, the error in this identification step is significant,
especially around a=0.25 and 0.75. Correction of this error is needed and can be accomplished
by using the above equation.

Function F for two-dimensional problems has the form

f (x, y) = C1+C2x+C3y+C5xy, 0�x�1, 0�y�1

C1 = Fi, j

C2 = Fi+1, j −Fi, j

C3 = Fi, j+1−Fi, j

C5 = Fi, j −Fi+1, j −Fi, j+1+Fi+1, j+1

(10)

When an F array set is provided to describe the liquid-wet area, a local partly filled sectional area
can be distinguished by an equation, f =0.5, at every rectangle defined by four surrounding grid
centers.

The arbitrary macro-shape of the interface could be reasonably described by composition of
local segments produced by the above equation because of its curvy nature. Consider a circular
section occupying a grid point only, with its center coinciding with the grid point center. The
computed free surface curve and its section are shown in Figure 9(a). If the center of a circular
section of the same size as the former is now at a rectangle corner as in Figure 9(b), the wet area
does not appear at all from the equation of f =0.5.

For cases of circular section with a radius of multiplication similar to the grid size, the reproduced
areas are smaller than the original areas (see Figure 10). The reproduced area relative to the
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F*=0.78

F*=0

(a)

(b)

Figure 9. Errors produced from polynomial function in two-dimensional domain: diameter=�x .

original area in a two-dimensional domain is shown in Figure 11. The ratio demonstrates that the
reproduction ratio depends highly on the curvature of the section and the position of the center
of the curvature. As the curvature radius grows, the slope of the reproduction area approaches 1.
Similar to the one-dimensional case, the reproduction errors in the identification step are significant,
especially when the curvature radius is small. The errors need to be treated in an appropriate way.

Once the true Fn array at a time step, n, is known, the free surface is identified by the previous
polynomial function ((8)–(10)) in a three-, two-, or one-dimensional domain at a time step n, and
the computed array at the same time step n, Fn,∗, is obtained with some identification errors:

En
i, j =Fn

i, j −Fn,∗
i, j (11)

The new array at the next time step, Fn+1,∗, can be obtained from the same identification function
for the previous time step by introducing a projection method. Assuming that the velocity fields
vary linearly in space, we can find the position of the three-dimensional cube or two-dimensional
rectangle or one-dimensional line segment by tracing backwards from the grid point of interest at
the moment of interest, see Figure 11. The four F elements surrounding a rectangle are defined
at the mesh cell centers. The position of each corner of the rectangle is found from the flow field
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(a)

(b)

Figure 10. Errors produced from polynomial function in two-dimensional domain: diameter=2�x .

0.79 1.60 

D

∆x

A

A*

1

Figure 11. Error ratio versus diameter of circular section.

by tracing backward, an example of which is computed from the following equation:

�xi, j = 0.5(Un
i−1, j +Un

i, j )�t

�yi, j = 0.5(V n
i, j−1+V n

i, j )�t
(12)
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The velocity fields are assumed not to vary within a time increment. If the flow field is correctly
provided, the fluid in the old cube (or rectangle or line segment) should automatically satisfy the
continuity equation. If the CFL value is confined to less than or equal to 0.5 for convenience, then
the old cube will position in the adjoining 27 grid points in a three-dimensional domain, or the
old rectangle will be in the adjoining nine grid points in a two-dimensional domain, or the old
line segment will be in the adjoining three grid points in a one-dimensional domain.

For example, looking at the two-dimensional problems, four F values are available at four grid
centers in a large rectangle, and each f function is composed of four F values at four grid centers.
The area occupied by liquid in one of the rectangles can be obtained by computing the sub-areas
where f is greater than or equal to 0.5. The total computed liquid volume fraction or wet portion,
Fn+1,∗
i, j , can be obtained by adding the wet fractions in the four sub-areas. An example of the F

value at the new time step, Fn+1,∗
i, j , is graphically shown in Figure 12.

The error term of Equation (11) may primarily contribute to the total error during the identifi-
cation step at both n and (n+1) time steps; therefore, the error term at the following time step is
approximated as identical to the error term at the previous time step under the assumption that the
local curvature of the interface does not quickly rapidly so that a minor difference between the
errors at the two time steps can be ignored. The new Fn+1

i, j value at grid point (i, j) is computed
from the following equation:

Fn+1
i, j =Fn+1,∗

i, j +En
i, j (13)

The above equation for the F array at the new time step can include an F value larger than 1
or smaller than 0 due to the error correction step or the numerical computation of the volume
projection in the reverse flow direction, including the numerical interpolation of the flow velocity
field. The overflow or underflow is basically originated from the finite time increment. Overflow
or underflow frequently occurs around the head or tail of a moving liquid body. Here we propose
to truncate the overflow or underflow, and isotropically distribute the positive or negative excess
amount to the adjoining partly filled grid points. The grid points for re-distribution of excess
volume are chosen from the F matrix values, so that the cells chosen have the capacity to receive
the excess volume. A few different combinations can happen depending on the F distribution

FLOWFLOW

(a) (b)

Figure 12. Graphical presentation of projection method to obtain new Fn+1,∗
i, j for two-dimensional case.
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(a) (b)

(d)(c)

Figure 13. Re-distribution of overflow or underflow volume to adjoining grids.

around the overflow or underflow grid point in a two-dimensional domain, see Figure 13. This
re-distribution step completes the whole computation of the movement of the free surface.

The present method is applied to several simple flow situations that have analytical solutions.
First, the method is tested for a one-dimensional flow case. The case has the following conditions:

the horizontal velocity=constant and the time increment=10% of CFL=1.0 condition. The
interface and liquid move in the x direction. The computed results coincide exactly with the
analytical solution (see Test results).

Second, the method is evaluated for a two-dimensional flow case: a linear irrotational transition
of a circular section in a direction parallel to the x-axis. The test conditions are the radius of
the circular section = 3, 6, 9 times the horizontal grid size, respectively, U =0.25m/s; �x=
�y=0.05m; �t=0.02s; total number of time steps=120 to allow the initial circular section pass
through a wall. Two properties are calculated to assess the accuracy of the method: the overall
accuracy, H , and the relative net loss or gain of mass compared with the original mass, R.

The relative overall error, H , is computed by the following equation:

H = 1

A

∑
j

∑
i

(An
i, j −Fn

i, j )
2 (14)

where the Ai, j array is the analytical solution of the given problem and n is the last computational
time step. The relative volume change ratio, R, is obtained by

R=
∣∣∣∣∣
(
1

A

∑
j

∑
i
Fn
i, j −1

)∣∣∣∣∣ (15)

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 58:1237–1255
DOI: 10.1002/fld



FREE SURFACE TRACKING 1251

3. TEST RESULTS

The computed F field for parallel advection of the section with radius of 6�x is shown in Figure 14.
The computation errors of the present method and the donor-cell method relative to the analytical
solution are shown in Table I.

The overall errors demonstrate that the PREC method is more accurate than the donor-cell
method. The total volume error of the present method grows as the computation proceeds. The total
volume was more accurately conserved with the present PREC method than with the donor-cell
method. Figure 14 also demonstrates that the computed head speed with the present method is
close to the analytical solution and that with the donor-cell method. Both results imply that the
present method, PREC, produces a more accurate solution than the donor-cell VOF method for
the examined cases.

A comparison of test results between the present method and donor-cell method for two-
dimensional irrotational transition with an angle between 0 and 45◦ from the x-axis is shown in
Table II, and the computed transition results for 45◦ are shown in Figure 15.
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Figure 14. Comparison of present method and donor-cell method for horizontal transition case.

Table I. Errors of PREC method and donor-cell method for parallel transition cases.

Method

PREC Donor-cell

Circle radius Overall error, H Volume error, R Overall error, H Volume error, R

3�x 6.84e−3 2.66e−4 2.36e−2 1.72e−4
6�x 2.08e−2 7.69e−5 2.38e−2 4.33e−5
9�x 3.97e−3 4.10e−6 1.57e−2 5.00e−7
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Table II. Errors of PREC method and donor-cell method for angled transition cases.

Method

PREC Donor-cell

Angle (deg.) Overall error, H Volume error, R Overall error, H Volume error, R

0 2.08e−2 7.69e−5 2.38e−2 4.33e−5
22.5 2.21e−2 3.62e−5 3.61e−2 3.87e−4
45 2.98e−3 4.95e−5 3.84e−2 1.10e−4
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Figure 15. Comparison of present method and donor-cell method for sloped transition case.

It should be noted that computation errors of differing order are produced depending on the
intersection angle between advection of fluid body and a reference axis. The difference may be
explained with the repeated accumulation of advection errors in a fixed rectangular grid system
for a specific angle. Similar to the earlier parallel transition cases, the PREC method provides
more accurate solutions than the donor-cell method. Figure 15 also shows that the present method
gives a smooth shape to the front part of the liquid body during advection, whereas the donor-cell
method produces deformation around the front part.

Finally, the method is examined for the case of a pure rotation of fluid in a two-dimensional
domain. The flow conditions are a constant angular velocity of �/6rad/s; the rotation center was
the center of the circular liquid body; �x=�y=0.05m; �t=0.09, 0.045, 0.03 s; total number of
time steps=67, 133, 200 for circular section of radius of 3, 6, and 9 times the grid size, respectively.
The total computation time corresponds to the half-cycle rotation time of the liquid body. The
analytical solution for this case is the same as the initial condition. The computed final F contour
for the rotation case is shown in Figure 16. The present method produces closer agreement with
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Figure 16. Comparison of present method and donor-cell method for rotational case.

Table III. Errors of PREC method and donor-cell method for rotating fluid cases.

Method

PREC Donor-cell

Circle radius Overall error, H Volume error, R Overall error, H Volume error, R

3�x 1.32e−2 7.61e−4 9.24e−2 6.28e−4
6�x 9.82e−3 5.12e−4 7.53e−2 6.24e−4
9�x 2.56e−3 8.57e−4 7.21e−2 2.08e−3

the analytical solution for section shape than the donor-cell method. The computed errors at the
final step of the rotational flow cases are shown in Table III.

The computed overall errors and the volume conservation errors support that the present method
gives more accurate solutions than the donor-cell method for the case of rotating flows.

4. CONCLUSIONS

A new method, PREC, for free surface tracking has been proposed here. The method is composed
of three steps: reconstruction step of the free surface using a polynomial function; computation
of advection by using a projection method and additional adjustment to remove errors produced
during the reconstruction step; and the truncating and redistribution of the overflow or underflow
of F values to the adjoining grid points.
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Figure 17. Comparison of present method and donor-cell method for rotational case.

The present third-order interpolation polynomial function for three-dimensional problems is
reduced to a linear function when any two variables are fixed. Therefore, the present method could
be thought of as an extension of a linear reconstruction method.

The PREC method shows reasonably accurate solutions, in general, with respect to the overall
error, mass conservation, and the conservation of the frontal shape. The present method produces
more accurate solutions than the donor–acceptor VOF method in the test runs presented. Conclu-
sively, a comparison of results with analytical solutions confirm the applicability of the new method.
Considering the importance of the head speed of a liquid body and the phase of the instantaneous
fluid impact force exerted on a rigid body, the PREC method may be considered to reproduce the
free surface movement in two-phase flows.

The present method is natural in the sense that the detailed function f perfectly matches with
the coarse matrix F in the computational grid system. In general, the computations show that the
present PREC method is useful for the simulation of free surface movement, especially when the
free surface phases are important. When the free surface folds over or two or more free surfaces
meet, the present model can deal with the problem with no difficulty. Another merit of the present
method is that it includes some extreme cases, e.g. two free surfaces exist in a grid point, where
the f contour looks like a saddle, see Figure 17, which is for a case of f (0,0)=0, f (1,0)=1,
f (0,1)=0.9, and f (1,1)=0.
Extending the identification step to three-dimensional problems, errors will occur depending

on the curvature radius and the position of the center of the curvature radius, similar to the two-
dimensional problems. Further tests and applications for three-dimensional flow cases are needed
in the future.
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